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In creative fields such as Graphic Design, it is often difficult to break away 
from the past and find novel solutions. We present an evolutionary system 
for generating typographical glyphs along with a 3-stage workflow for 
using it as a graphic design tool. We evolve SVG using both interactive and 
automatic fitness assignments and comparing traditional operators with 
topological ones. The results suggest that the implemented topological 
operators are less destructive than conventional ones. Advantages 
to both interactive and automatic evaluation methods are addressed. 
Finally, we refer to a set of design artefacts developed out of the 
generated glyphs, demonstrating the relevance of including the system in 
the designers’ workflow.
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1. Introduction

Novelty is one of the fundamental characteristics of describing creativity 
(Boden 1996). Though, making novel advances in creative fields such as art 
or design often is a protracted process. Novelty may result from stochastic 
events, for example, exploited by experimentation (trial and error). For 
instance, even the interpolation of existent ideas may carry a stochastic 
factor, once it may be necessary to experiment with several different ways 
of interpolating ideas. For machines to be creative, these must overcome 
the same challenges as human beings do (Veale and Cardoso 2019). Thus, 
as Computational Creativity (CC) algorithms step forward in many creative 
fields, it is noticeable that many systems, mainly the ones based on Machine 
Learning (ML), often end up creating pastiche—imitations of existent styles 
(Toivonen and Gross 2015). Evolutionary Computation (EC), inspired by 
Darwin’s theory of natural evolution, has potential to find novelty due to 
their similarity to the search processes of human designers—search the 
unexplored space of possibilities, often with a specific conceptual target 
limiting the possibilities. The main difficulty of applying EC for generating 
aesthetics is developing appropriate fitness functions. Nevertheless, ML 
and EC may complement each other for getting more capable CC systems. 
For instance, using EC for generating and ML for evaluating individuals. As 
long as there is not a perfect solution for finding novel designs, we believe 
that the most successful contemporary solution resides in the collabora-
tion Human-Computer. In that sense, we propose a collaboration between 
humans, EC and ML (Romero 2007).

In this paper we are presenting Ȧdea, an online EC system for aiding 
designers during the creation of typographical glyphs, offering initial 
sketches for given characters. Human designers may then use the glyphs 
for creating design artefacts such as logotypes, typefaces or artworks. We 
opted to evolve SVG glyphs rather than raster ones for easing its editing and 
usage—it enables (i) direct vectorial manipulation, (ii) endless resizing and 
(iii) direct usage in typeface development software.

In the following sections, we present related work regarding ML and EC 
for aiding humans in the creative process. Then, we present our approach 
and we showcase some final artefacts designed using the generated glyphs. 
We conclude by reflecting on the current state of the system, along with 
future work.

2. Related work

Ȧdea uses EC to explore a set of parameters (gene values) and find novel 
typographic glyphs that help designers to construct new designs. Similarly, 
other systems have been developed using Artificial Intelligence (EC or ML) 
for aiding graphic designers’ creativity.
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A common ML approach is training models with existing examples and 
then handling the latent space to generate interpolations of these. However, 
as already referred, such approaches often produce pastiche results (Toivonen 
and Gross 2015). EC approaches also have their own shortcomings once it 
may be difficult to write conditions for automatically evaluating aesthetics. 
Yet, as well as it was employed in our system, ML may be used to endorse 
automatic fitness assignment, permitting extensive exploration. Correia et 
al. (2013) demonstrate the feasibility of such by evolving figurative images 
using classifiers trained to recognize objects.

Most of the EC systems for creative purposes employ interactive evalua-
tion (manually managed by the user). This process is often slower yet more 
controllable, being useful in many creative contexts (Cunha et al. 2019). 
Along with ML and interactive aesthetics evaluation, Ȧdea regards EC for 
typography and vector formats. A related system is Heijer and Eiben’s (2011), 
which allows the automatic evolution of computational-art out of vectori-
zations of photographs. The system also relates to ours by allowing one to 
start evolving from meaningful images.

Respecting both vector graphics and typography, Unemi and Soda (2003) 
proposed an interactive system for generating Japanese typefaces. The 
stroke of vectorial skeletons was evolved. Although there is no reference to 
it, it is likely that this approach could be applied to Roman alphabets. From 
the reviewed systems, Schmitz’s (2004) is one of the most related to Ȧdea, 
by allowing to interactively evolve typefaces out of existing ones. The phe-
notype is encoded by three arrays of vectorial points describing the skeleton, 
line strength and serif shape (if available). The greater shortcoming of this 
approach is the need for a non-standard font format, which makes it difficult 
to create initial populations, leading to little variety. Yoshida et al. (2010) 
developed an interactive system for evolving typefaces out of existing ones. 
The anatomical parts of the initial glyphs had to be previously defined using 
complementary software. These requirements still obligate a protracted 
creation process, which may lead to the aforementioned shortcomings again. 
Levin’s et al. (2006) permits to automatically evolve abstract yet congruent 
typefaces (represented by Bezier curves), starting from a single glyph and 
a set of parameters defined by the user. This approach could be highly com-
plementary to Ȧdea. Though, there is no evidence that the system is able to 
generate glyphs for real alphabets. A more recent EC system for aiding type 
design is the one by Martins et al. (2016). The user may define a set of start-
ing SVG modules and the system automatically evolves a style-congruent 
and camera-ready typeface out of them. By altering the starting modules, 
it is possible to create typefaces that are conceptually suited for a wide 
variety of purposes.
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3. Approach

As a Human-Computer collaboration system, Ȧdea needs to be easily acces-
sible to users (designers) and  for that reason it was developed as a web page. 
The evolutionary engine runs natively on JavaScript (JS) on the client-side. 
The user interface (HTML, CSS, JS) (see Fig. 1) allows the definition of several 
different algorithm parameters, start and stop the evolutionary process, toggle 
between manual and automatic evaluation, and download single individuals 
or entire populations. After downloading the intended individuals, the user 
may manipulate them through external resources (for example, vector-edi-
tion software) or use them straight for creating designs. For trying the latest 
version of the system, please visit: https://student.dei.uc.pt/~dfl/Adea.

3.1. Evolutionary Engine

In our system, a genotype consists of a set of coordinates (relative to the 
canvas’ origin) and their respective type of point—“line” (L) or “move to” (M). 
As a whole, those define SVG paths embedded in a 200x200 pixels view box.

Is it possible to start evolving from any population, whether it is a set 
of abstract individuals (randomly generated points, for example) or a set 
of meaningful glyphs (for example, the character “A”). It is also possible 
to evolve towards a given target, stop the process and then start from the 
already evolved population towards a different target.

At this stage, the interface does not allow the users to evolve from their 
own initial glyphs. The system starts by randomly choosing a number 
(population size) of typefaces out of a dataset of 977 Google fonts. Then, it 
automatically converts the characters into SVG paths using opentype.js.

The points of the paths are controlled using our one JS library, which 
allows point remotion, translation and type shifting (L or M). As the class 
cannot handle all the types of points, we convert them all into L and M types. 
This does not represent a problem because most of the paths can preserve 

Fig. 1. Ȧdea’s Interface  
https://student.dei.uc.pt/~dfl/Adea

https://student.dei.uc.pt/~dfl/Adea
http://opentype.js
https://student.dei.uc.pt/~dfl/Adea
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their topology. Also, we do not seek to perfectly render the typefaces, but 
get a diverse set of initial meaningful glyphs. For starting from random 
initial populations, the points of each individual are randomized within 
the SVG canvas.

There are two different types of crossover available—2-point crossover 
and topological crossover. Variation operations involve two individuals at a 
time, each one with a 50% chance to be selected as predominant—first father. 
We refer to the latest as i1 and the non-predominant one as i2.

The user may set a probability for the variation operators to perform, as 
well as a maximum percentage of points to crossover in a single interaction 
(MPC). We set the latest as a percentage once the number of points in the 
genotype may vary in the order of hundreds. By doing that, we ensure that 
we are crossing over parts with relatively similar sizes.

The 2-point crossover operator takes a random slice of consecutive points 
from i1 and swaps it with a random slice of consecutive points from i2. The 
size of the slides is equal or smaller than the defined MPC. Also, the slices 
may not be the same size nor aligned.

The topological crossover operator aims to better keep the topology of 
the initial population, yet still maintain variety. For that to happen, a point 
from i1 is more likely to crossover with its closer points (in the Cartesian’s 
plane) from i2. The crossover chances decrease exponentially as the points 
are further away.

We implemented five mutation methods which run by the following order: 
(i) point deletion; (ii) conventional/topological point translation; (iii) point 
type shifting; and (iv) point creation. The user may (i) choose between con-
ventional or topological point translation; (ii) set a probability for a mutation 
to perform; (iii) set individual probabilities for each mutation operator to 
run; (iv) set a maximum percentage of points to be mutated in a single oper-
ation. The deletion method deletes one random point out of an individual’s 
genotype. The conventional translation method translates one random 
point within a maximum radius (MR) defined by the user. The topological 
translation method translates a random array of consecutive points (>=1) 
according to a single random vector whose maximum magnitude is MR. 
The type shifting method toggles the type of one random point between L 
and M. The creation method picks a random point from i1 and adds a new 
point around it within MR; the type of the new point may be either M or L 
according to a probability defined by the user.

During the evolutionary process, the user may alternate between inter-
active and automatic evaluation. The fitness value is assigned from 0 to 1, 
being 1 the best hypothesis. An individual is considered properly fitted if its 
fitness value is greater than 1 minus a set satisfactory distance. Interactive 
evaluation is performed by clicking over individuals from better to worst 
fit. The not clicked individuals are assigned with the fitness of 0. Automatic 
evaluation is computed using a pre-trained neural network from Tesseract.js 

http://Tesseract.js
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and it takes into account two considerations: (i) does Tesseract recognize the 
character; and (ii) with how much confidence it recognizes the character. 
If a glyph is not recognized or it is smaller than a minimum size defined 
by the user, the fitness value is set to 0. Otherwise, the fitness value is the 
distance between the confidence value returned by Tesseract and the target 
confidence set by the user. Ideally, a novel glyph for a given character must be 
far enough from Tesseract’s training examples (the existing glyphs), but close 
enough for the glyphs to be representative of the character. Thus, an optimal 
confidence target must not be 100%, but a lower value (80%, for example).

Regarding selection, the user may opt between tournament or elitist 
methods, and also set a tournament/elite size. The evolutionary process may 
be finished manually or by the completion of one of the following conditions: 
(i) a given maximum number of generations was run; (ii) a given percentage 
of the population is properly fitted.

4. Experimental Setup and Results 

We conducted experiments to assess: (i) whether the system was able to 
generate suitable glyphs for a given character; (ii) whether we could find 
new ideas for aiding the design of novel glyphs. For assessing full detail on 
the settings used in the experiments, please visit: https://cdv.dei.uc.pt/adea. 

We started by comparing conventional operators (Fig. 2.a and 2.b) and 
topological operators (Fig. 2.c and 2.d) for a population of Google “A”s evolved 
without evaluating individuals (random selection). As a result, we noticed 
that topological operators better keep the topology of the glyphs. We also 
noticed that having no evaluation is substantially destructive to the pheno-
types, and the problem tends to increase as we step up generations (see Figure 
2.b and 2.c for 50 generations and Figure 2.b and 2.d for 100 generations). 

Fig. 2. Populations of Google “A”s evolved 
using random selection;  
(a) 50 generations, conventional operators; 
(b) 100 generations,conventional operators; 
(c) 50 generations, topological operators; 
(d) 100 generations, topological operators.

https://cdv.dei.uc.pt/adea


166

Therefore, we compared random, interactive and automatic evaluation 
methods, using topological operators. As expected, both interactive (Fig. 
3.b) and automatic (Fig. 3.c) evaluation turned out to be less destructive to 
the phenotypes than using no evaluation (Fig. 3.a).

By comparing Fig. 3.b and Fig. 3.c, we noticed that interactive evaluation 
may allow better control on the process, in this case, aiding the generation of 
less noisy glyphs. Moreover, these may be fully camera-ready and usable in 
graphic applications already. Its shortcoming may be the binding protracted 
process which may frustrate users after some seeds.

The automatic evaluation may be more agile and efficient once it has 
been successful in finding unexpected solutions without requiring major 
human effort. For instance, by searching for glyphs of 80% confidence, 
which may have higher chances to be novel due to their distance to the 
training examples of the network.

To address whether the aforementioned insights could be generalized, we 
evolved glyphs for all the uppercase characters in the Latin alphabet, using 
elitist selection and topological operators. Figure 4.a and 4.b showcases 
glyphs regarding interactive and automatic evaluation, respectively. Their 
similar graphisms suggest that both methods may lead to similar results, so 
the automatic one may stand out by being able to fasten the process, allowing 
the generation of a higher number of ideas per time period.

As the generated glyphs may not be camera-ready (they may only trigger 
off new ideas), we recommend a 3-stage workflow (see Figures 5 and 6) for 
designers to use the system in its full potential: (i) generate and download 
glyphs straight out of Ȧdea; (ii) Use a third party software (vector-editing 
software, for example) for post-editing the glyphs or create new elements 
out of them (for example, a typeface or a logotype); (iii) Create artefacts using 
the previously designed elements.

Fig. 3. 50th generation of Google “A”s 
evolved using topological operators;  
(a) using random selection; (b) using 
interactive evaluation and elitist selection;  
(c) using automatic evaluation  
and elitist selection.

Fig. 4. Different characters regarding 
different seeds and generations,  
using elitist selection and topological 
operators; (a) regarding interactive 
evaluation; (b) regarding automatic 
evaluation.
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For illustrating such, we present glyphs generated using varied operators 
and varied evaluation methods. Figure 5 presents a comparison between 
non-edited and post-edited glyphs, exemplifying possible manual fixes. 
We picked glyphs we considered noteworthy, yet different users may find 
different glyphs interesting. Figure 6 showcases artefacts designed using 
the same post-edited glyphs, demonstrating the potential of including Ȧdea 
in graphic designers’ workflow.

Fig. 5. Not-edited glyphs vs post-edited 
glyphs/ typefaces/ logos. 

Fig. 6. Final artefacts designed using the 
manually manipulated  
glyphs/ typefaces/ logos.
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5. Conclusion and Future Work

We have presented Ȧdea, an evolutionary system for aiding designers to 
find novel glyphs by offering starting points to conceptualize, construct and 
explore new design spaces. Instead of starting to evolve from randomness, 
we used glyphs from Google fonts for constructing initial populations—a 
starting point that we know to be closer from the intended results. These 
allowed us to use topological crossover and mutation operators which 
revealed to better keep the topology of the initial populations.

We tested both interactive and automatic fitness assignments (performed 
by a pre-trained neural network—Tesseract.js). We assessed that interactive 
evaluation may allow better control of the results, so it is easier to drive the 
process into camera-ready glyphs. Nevertheless, noteworthy results were 
also produced using the automatic fitness assignment. Thus we may pinpoint 
some advantages in using the latest, such as fastening the exploration pro-
cess and allowing the generation of a higher number of ideas per time period.

Looking at the visual results presented in this paper, we consider that 
we have been successful in evolving suitable new glyphs for several differ-
ent characters (see Fig. 4). Also, from our experience in GD and sustaining 
our conclusion in the artefacts designed out Ȧdea’s glyphs (see Fig. 6), we 
consider that the system is capable of fostering creativity by offering ideas 
for GD applications. Future work will focus on (i) supporting the aforemen-
tioned statement by a user survey; (ii) finding other metrics for automatic 
evaluation (for example, pixel-to-pixel distance to existing glyphs); (iii) using 
figurative images in initial populations; (iv) using more mutation operators; 
(v) inviting different designers to test the system and use it to develop design 
artefacts; (vi) generate whole typefaces out of the generated glyphs.
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