
xCoAx 2020
Computation,

Communication,
Aesthetics & X

2020.xCoAx.org
Graz, Austria

In creative fields such as Graphic Design, it is often difficult to break away
from the past and find novel solutions. We present an evolutionary system
for generating typographical glyphs along with a 3-stage workflow for
using it as a graphic design tool. We evolve SVG using both interactive and
automatic fitness assignments and comparing traditional operators with
topological ones. The results suggest that the implemented topological
operators are less destructive than conventional ones. Advantages
to both interactive and automatic evaluation methods are addressed.
Finally, we refer to a set of design artefacts developed out of the
generated glyphs, demonstrating the relevance of including the system in
the designers’ workflow.

Keywords: Generative Design, Generative Typography, Computational
Creativity, Genetic Algorithm.

Ȧdea: Evolving Glyphs for Aiding
Creativity in the Graphic
Design Workflow
Daniel Lopes
dfl@dei.uc.pt
University of Coimbra, Centre for
Informatics and Systems of the University
of Coimbra, Department of Informatics
Engineering, Portugal

João Correia
jncor@dei.uc.pt
University of Coimbra, Centre for
Informatics and Systems of the University
of Coimbra, Department of Informatics
Engineering, Portugal

Penousal Machado
machado@dei.uc.pt
University of Coimbra, Centre for
Informatics and Systems of the University
of Coimbra, Department of Informatics
Engineering, Portugal

http://xCoAx.org
mailto:dfl@dei.uc.pt
mailto:jncor@dei.uc.pt
mailto:machado@dei.uc.pt

161

1. Introduction

Novelty is one of the fundamental characteristics of describing creativity
(Boden 1996). Though, making novel advances in creative fields such as art
or design often is a protracted process. Novelty may result from stochastic
events, for example, exploited by experimentation (trial and error). For
instance, even the interpolation of existent ideas may carry a stochastic
factor, once it may be necessary to experiment with several different ways
of interpolating ideas. For machines to be creative, these must overcome
the same challenges as human beings do (Veale and Cardoso 2019). Thus,
as Computational Creativity (CC) algorithms step forward in many creative
fields, it is noticeable that many systems, mainly the ones based on Machine
Learning (ML), often end up creating pastiche—imitations of existent styles
(Toivonen and Gross 2015). Evolutionary Computation (EC), inspired by
Darwin’s theory of natural evolution, has potential to find novelty due to
their similarity to the search processes of human designers—search the
unexplored space of possibilities, often with a specific conceptual target
limiting the possibilities. The main difficulty of applying EC for generating
aesthetics is developing appropriate fitness functions. Nevertheless, ML
and EC may complement each other for getting more capable CC systems.
For instance, using EC for generating and ML for evaluating individuals. As
long as there is not a perfect solution for finding novel designs, we believe
that the most successful contemporary solution resides in the collabora-
tion Human-Computer. In that sense, we propose a collaboration between
humans, EC and ML (Romero 2007).

In this paper we are presenting Ȧdea, an online EC system for aiding
designers during the creation of typographical glyphs, offering initial
sketches for given characters. Human designers may then use the glyphs
for creating design artefacts such as logotypes, typefaces or artworks. We
opted to evolve SVG glyphs rather than raster ones for easing its editing and
usage—it enables (i) direct vectorial manipulation, (ii) endless resizing and
(iii) direct usage in typeface development software.

In the following sections, we present related work regarding ML and EC
for aiding humans in the creative process. Then, we present our approach
and we showcase some final artefacts designed using the generated glyphs.
We conclude by reflecting on the current state of the system, along with
future work.

2. Related work

Ȧdea uses EC to explore a set of parameters (gene values) and find novel
typographic glyphs that help designers to construct new designs. Similarly,
other systems have been developed using Artificial Intelligence (EC or ML)
for aiding graphic designers’ creativity.

162

A common ML approach is training models with existing examples and
then handling the latent space to generate interpolations of these. However,
as already referred, such approaches often produce pastiche results (Toivonen
and Gross 2015). EC approaches also have their own shortcomings once it
may be difficult to write conditions for automatically evaluating aesthetics.
Yet, as well as it was employed in our system, ML may be used to endorse
automatic fitness assignment, permitting extensive exploration. Correia et
al. (2013) demonstrate the feasibility of such by evolving figurative images
using classifiers trained to recognize objects.

Most of the EC systems for creative purposes employ interactive evalua-
tion (manually managed by the user). This process is often slower yet more
controllable, being useful in many creative contexts (Cunha et al. 2019).
Along with ML and interactive aesthetics evaluation, Ȧdea regards EC for
typography and vector formats. A related system is Heijer and Eiben’s (2011),
which allows the automatic evolution of computational-art out of vectori-
zations of photographs. The system also relates to ours by allowing one to
start evolving from meaningful images.

Respecting both vector graphics and typography, Unemi and Soda (2003)
proposed an interactive system for generating Japanese typefaces. The
stroke of vectorial skeletons was evolved. Although there is no reference to
it, it is likely that this approach could be applied to Roman alphabets. From
the reviewed systems, Schmitz’s (2004) is one of the most related to Ȧdea,
by allowing to interactively evolve typefaces out of existing ones. The phe-
notype is encoded by three arrays of vectorial points describing the skeleton,
line strength and serif shape (if available). The greater shortcoming of this
approach is the need for a non-standard font format, which makes it difficult
to create initial populations, leading to little variety. Yoshida et al. (2010)
developed an interactive system for evolving typefaces out of existing ones.
The anatomical parts of the initial glyphs had to be previously defined using
complementary software. These requirements still obligate a protracted
creation process, which may lead to the aforementioned shortcomings again.
Levin’s et al. (2006) permits to automatically evolve abstract yet congruent
typefaces (represented by Bezier curves), starting from a single glyph and
a set of parameters defined by the user. This approach could be highly com-
plementary to Ȧdea. Though, there is no evidence that the system is able to
generate glyphs for real alphabets. A more recent EC system for aiding type
design is the one by Martins et al. (2016). The user may define a set of start-
ing SVG modules and the system automatically evolves a style-congruent
and camera-ready typeface out of them. By altering the starting modules,
it is possible to create typefaces that are conceptually suited for a wide
variety of purposes.

163

3. Approach

As a Human-Computer collaboration system, Ȧdea needs to be easily acces-
sible to users (designers) and for that reason it was developed as a web page.
The evolutionary engine runs natively on JavaScript (JS) on the client-side.
The user interface (HTML, CSS, JS) (see Fig. 1) allows the definition of several
different algorithm parameters, start and stop the evolutionary process, toggle
between manual and automatic evaluation, and download single individuals
or entire populations. After downloading the intended individuals, the user
may manipulate them through external resources (for example, vector-edi-
tion software) or use them straight for creating designs. For trying the latest
version of the system, please visit: https://student.dei.uc.pt/~dfl/Adea.

3.1. Evolutionary Engine

In our system, a genotype consists of a set of coordinates (relative to the
canvas’ origin) and their respective type of point—“line” (L) or “move to” (M).
As a whole, those define SVG paths embedded in a 200x200 pixels view box.

Is it possible to start evolving from any population, whether it is a set
of abstract individuals (randomly generated points, for example) or a set
of meaningful glyphs (for example, the character “A”). It is also possible
to evolve towards a given target, stop the process and then start from the
already evolved population towards a different target.

At this stage, the interface does not allow the users to evolve from their
own initial glyphs. The system starts by randomly choosing a number
(population size) of typefaces out of a dataset of 977 Google fonts. Then, it
automatically converts the characters into SVG paths using opentype.js.

The points of the paths are controlled using our one JS library, which
allows point remotion, translation and type shifting (L or M). As the class
cannot handle all the types of points, we convert them all into L and M types.
This does not represent a problem because most of the paths can preserve

Fig. 1. Ȧdea’s Interface
https://student.dei.uc.pt/~dfl/Adea

https://student.dei.uc.pt/~dfl/Adea
http://opentype.js
https://student.dei.uc.pt/~dfl/Adea

164

their topology. Also, we do not seek to perfectly render the typefaces, but
get a diverse set of initial meaningful glyphs. For starting from random
initial populations, the points of each individual are randomized within
the SVG canvas.

There are two different types of crossover available—2-point crossover
and topological crossover. Variation operations involve two individuals at a
time, each one with a 50% chance to be selected as predominant—first father.
We refer to the latest as i1 and the non-predominant one as i2.

The user may set a probability for the variation operators to perform, as
well as a maximum percentage of points to crossover in a single interaction
(MPC). We set the latest as a percentage once the number of points in the
genotype may vary in the order of hundreds. By doing that, we ensure that
we are crossing over parts with relatively similar sizes.

The 2-point crossover operator takes a random slice of consecutive points
from i1 and swaps it with a random slice of consecutive points from i2. The
size of the slides is equal or smaller than the defined MPC. Also, the slices
may not be the same size nor aligned.

The topological crossover operator aims to better keep the topology of
the initial population, yet still maintain variety. For that to happen, a point
from i1 is more likely to crossover with its closer points (in the Cartesian’s
plane) from i2. The crossover chances decrease exponentially as the points
are further away.

We implemented five mutation methods which run by the following order:
(i) point deletion; (ii) conventional/topological point translation; (iii) point
type shifting; and (iv) point creation. The user may (i) choose between con-
ventional or topological point translation; (ii) set a probability for a mutation
to perform; (iii) set individual probabilities for each mutation operator to
run; (iv) set a maximum percentage of points to be mutated in a single oper-
ation. The deletion method deletes one random point out of an individual’s
genotype. The conventional translation method translates one random
point within a maximum radius (MR) defined by the user. The topological
translation method translates a random array of consecutive points (>=1)
according to a single random vector whose maximum magnitude is MR.
The type shifting method toggles the type of one random point between L
and M. The creation method picks a random point from i1 and adds a new
point around it within MR; the type of the new point may be either M or L
according to a probability defined by the user.

During the evolutionary process, the user may alternate between inter-
active and automatic evaluation. The fitness value is assigned from 0 to 1,
being 1 the best hypothesis. An individual is considered properly fitted if its
fitness value is greater than 1 minus a set satisfactory distance. Interactive
evaluation is performed by clicking over individuals from better to worst
fit. The not clicked individuals are assigned with the fitness of 0. Automatic
evaluation is computed using a pre-trained neural network from Tesseract.js

http://Tesseract.js

165

and it takes into account two considerations: (i) does Tesseract recognize the
character; and (ii) with how much confidence it recognizes the character.
If a glyph is not recognized or it is smaller than a minimum size defined
by the user, the fitness value is set to 0. Otherwise, the fitness value is the
distance between the confidence value returned by Tesseract and the target
confidence set by the user. Ideally, a novel glyph for a given character must be
far enough from Tesseract’s training examples (the existing glyphs), but close
enough for the glyphs to be representative of the character. Thus, an optimal
confidence target must not be 100%, but a lower value (80%, for example).

Regarding selection, the user may opt between tournament or elitist
methods, and also set a tournament/elite size. The evolutionary process may
be finished manually or by the completion of one of the following conditions:
(i) a given maximum number of generations was run; (ii) a given percentage
of the population is properly fitted.

4. Experimental Setup and Results

We conducted experiments to assess: (i) whether the system was able to
generate suitable glyphs for a given character; (ii) whether we could find
new ideas for aiding the design of novel glyphs. For assessing full detail on
the settings used in the experiments, please visit: https://cdv.dei.uc.pt/adea.

We started by comparing conventional operators (Fig. 2.a and 2.b) and
topological operators (Fig. 2.c and 2.d) for a population of Google “A”s evolved
without evaluating individuals (random selection). As a result, we noticed
that topological operators better keep the topology of the glyphs. We also
noticed that having no evaluation is substantially destructive to the pheno-
types, and the problem tends to increase as we step up generations (see Figure
2.b and 2.c for 50 generations and Figure 2.b and 2.d for 100 generations).

Fig. 2. Populations of Google “A”s evolved
using random selection;
(a) 50 generations, conventional operators;
(b) 100 generations,conventional operators;
(c) 50 generations, topological operators;
(d) 100 generations, topological operators.

https://cdv.dei.uc.pt/adea

166

Therefore, we compared random, interactive and automatic evaluation
methods, using topological operators. As expected, both interactive (Fig.
3.b) and automatic (Fig. 3.c) evaluation turned out to be less destructive to
the phenotypes than using no evaluation (Fig. 3.a).

By comparing Fig. 3.b and Fig. 3.c, we noticed that interactive evaluation
may allow better control on the process, in this case, aiding the generation of
less noisy glyphs. Moreover, these may be fully camera-ready and usable in
graphic applications already. Its shortcoming may be the binding protracted
process which may frustrate users after some seeds.

The automatic evaluation may be more agile and efficient once it has
been successful in finding unexpected solutions without requiring major
human effort. For instance, by searching for glyphs of 80% confidence,
which may have higher chances to be novel due to their distance to the
training examples of the network.

To address whether the aforementioned insights could be generalized, we
evolved glyphs for all the uppercase characters in the Latin alphabet, using
elitist selection and topological operators. Figure 4.a and 4.b showcases
glyphs regarding interactive and automatic evaluation, respectively. Their
similar graphisms suggest that both methods may lead to similar results, so
the automatic one may stand out by being able to fasten the process, allowing
the generation of a higher number of ideas per time period.

As the generated glyphs may not be camera-ready (they may only trigger
off new ideas), we recommend a 3-stage workflow (see Figures 5 and 6) for
designers to use the system in its full potential: (i) generate and download
glyphs straight out of Ȧdea; (ii) Use a third party software (vector-editing
software, for example) for post-editing the glyphs or create new elements
out of them (for example, a typeface or a logotype); (iii) Create artefacts using
the previously designed elements.

Fig. 3. 50th generation of Google “A”s
evolved using topological operators;
(a) using random selection; (b) using
interactive evaluation and elitist selection;
(c) using automatic evaluation
and elitist selection.

Fig. 4. Different characters regarding
different seeds and generations,
using elitist selection and topological
operators; (a) regarding interactive
evaluation; (b) regarding automatic
evaluation.

167

For illustrating such, we present glyphs generated using varied operators
and varied evaluation methods. Figure 5 presents a comparison between
non-edited and post-edited glyphs, exemplifying possible manual fixes.
We picked glyphs we considered noteworthy, yet different users may find
different glyphs interesting. Figure 6 showcases artefacts designed using
the same post-edited glyphs, demonstrating the potential of including Ȧdea
in graphic designers’ workflow.

Fig. 5. Not-edited glyphs vs post-edited
glyphs/ typefaces/ logos.

Fig. 6. Final artefacts designed using the
manually manipulated
glyphs/ typefaces/ logos.

168

5. Conclusion and Future Work

We have presented Ȧdea, an evolutionary system for aiding designers to
find novel glyphs by offering starting points to conceptualize, construct and
explore new design spaces. Instead of starting to evolve from randomness,
we used glyphs from Google fonts for constructing initial populations—a
starting point that we know to be closer from the intended results. These
allowed us to use topological crossover and mutation operators which
revealed to better keep the topology of the initial populations.

We tested both interactive and automatic fitness assignments (performed
by a pre-trained neural network—Tesseract.js). We assessed that interactive
evaluation may allow better control of the results, so it is easier to drive the
process into camera-ready glyphs. Nevertheless, noteworthy results were
also produced using the automatic fitness assignment. Thus we may pinpoint
some advantages in using the latest, such as fastening the exploration pro-
cess and allowing the generation of a higher number of ideas per time period.

Looking at the visual results presented in this paper, we consider that
we have been successful in evolving suitable new glyphs for several differ-
ent characters (see Fig. 4). Also, from our experience in GD and sustaining
our conclusion in the artefacts designed out Ȧdea’s glyphs (see Fig. 6), we
consider that the system is capable of fostering creativity by offering ideas
for GD applications. Future work will focus on (i) supporting the aforemen-
tioned statement by a user survey; (ii) finding other metrics for automatic
evaluation (for example, pixel-to-pixel distance to existing glyphs); (iii) using
figurative images in initial populations; (iv) using more mutation operators;
(v) inviting different designers to test the system and use it to develop design
artefacts; (vi) generate whole typefaces out of the generated glyphs.

Acknowledgements: This work is funded by national funds through the
FCT - Foundation for Science and Technology, I.P., within the scope of
the project CISUC - UID/CEC/00326/2020 and by European Social Fund,
through the Regional Operational Program Centro 2020 and is partially
supported by Fundação para a Ciência e Tecnologia, under the grant SFRH/
BD/143553/2019.

169

References
Boden, M. A.
1996. Creativity. In Artificial intelligence.
Elsevier. 267–291.

Correia, J.; Machado, P.; Romero, J.;
and Carballal, A.
2013. Evolving figurative images using
expression-based evolutionary art.
In Proceedings of the Fourth
International Conference on Computational
Creativity, 24–31.

Cunha, J. M.; Lourenço, N.; Correia, J.;
Martins, P.; and Machado, P.
2019. Emojinating: Evolving emoji blends.
In Eḱart, A.; Liapis, A.; and Castro Pena,
M. L., eds., Computational Intelligence in
Music, Sound, Art and Design, 110–126.
Cham: Springer International Publishing.

den Heijer, E., and Eiben, A. E.
2011. Evolving art with scalable vector
graphics. In Proceedings of the 13th
annual conference on Genetic and
evolutionary computation - GECCO ’11, 427.
New York, New York, USA: ACM Press.

Levin, G.; Feinberg, J.; and Curtis, C.
2006. Alphabet synthesis machine.

Martins, T.; Correia, J.; Costa, E.;
and Machado, P.
2016. Evotype: from shapes to glyphs.
In Proceedings of the Genetic and
Evolutionary Computation Conference
2016, 261–268. ACM.

Romero J., Machado P., Santos A., Cardoso A.
2003. On the Development of Critics in
Evolutionary Computation Artists. In:
Cagnoni S. et al. (eds) Applications of
Evolutionary Computing. EvoWorkshops
2003. Lecture Notes in Computer Science,
vol 2611. Springer, Berlin, Heidelberg

Schmitz, M.
2004. GenoType.

Toivonen, H., and Gross, O.
2015. Data mining and machine learning
in computational creativity. Wiley Int. Rev.
Data Min. and Knowl. Disc. 5(6):265–275.

Unemi, T., and Soda, M.
2003. An IEC-based support system
for font design. In SMC’03 Conference
Proceedings. 2003 IEEE International
Conference on Systems, Man and
Cybernetics. Conference Theme-
System Security and Assurance (Cat. No.
03CH37483), volume 1, 968–973. IEEE.

Veale, T., and Cardoso, F. A., eds.
2019. Computational Creativity - The
Philosophy and Engineering of
Autonomously Creative Systems. Springer.

Yoshida, K.; Nakagawa, Y.; and Koppen, M.
2010. Interactive genetic algorithm for
font generation system. In 2010 World
Automation Congress, 1–6. IEEE.

